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After a general characterization of"second order" saddle points two boundary 
cases are derived and illustrated by examples. The utilization of the 
classification is pointed out. One type, the virtual saddle point of index 2 
(V-SP 2), may be understood as "geometrical" superposition of two saddles 
of index 1 (transition structures) which belong to relatively independent 
processes within the chemical system. 
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1. Introduction 

The essential point in transition state theory (TST [1] is the formulation of the 
transition state. Taking the concept of potential energy surfaces as the basis of 
that theory transition states correspond to saddle points of index 1 (SP 1, the 
expression "first order saddle point" is also used in the literature) on the surface 
E =f(x)  of the chemically reacting system. (It is well known that this function 
in general is not given analytically, but has to be calculated point by point through 
iterative solution of matrix eigenvalue problems arising from the application of 
LCAO MO SCF methods). Saddle points belong to the so-called stationary points 
(with the coordinate vector x s') on the potential energy surface (PES). In these 
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points the gradient of the potential energy g = VE, vanishes 

g(x) aE = 0 with gr = - - .  (1)  
x = x ~ O Xr  

The stationary points are now characterized by the Cartesian force constant 
matrix F 

O 2 E  I Og, 
F,~ - [ - x = x  s' ( 2 )  

OxrOx . . . .  s, Oxs 

which has one and only one negative eigenvalue in the case of a saddle point of 
index 1 (transition structure). The observation of two negative eigenvalues of the 
force constant matrix in a stationary point on the surface indicates the existence 
of a saddle point of index 2 ("second order saddle point"). Stationary points 
with zero eigenvalues, occuring in addition to the 6(5) due to translation and 
rotation, should not be confused with saddles of a higher index and are not 
included in our discussion (cf. "monkey saddles" [2]). 

Negative eigenvalues measure the negative curvature along the principal axes on 
the PES in a stationary point. Their eigenvectors indicate the corresponding 
atomic shifts for leaving the saddle. A vibrational analysis according to Wilson 
[3] requires mass weighting of the Cartesian force constant matrix. Within the 
scope of that theory the negative eigenvalue -Aj of this matrix represents an 
imaginary vibration uj (decomposition mode [2]) in a generalized harmonic 
vibrational problem. With -Aj = (2~-cuj) 2 we have 

i 1 i'f~j where i = ~---1. (3) 
vj = ( 2 ~ c )  

Each decomposition mode (d-mode) is as any other normal mode characterized 
by an eigenvector (d-mode vector) assigning the displacement coordinates along 
the imaginary vibration. It should be stressed that the d-mode vector does not 
describe atomic shifts due to the properties of the PES alone, but is modified 
including the masses in the kinetic energy terms (cf. also [4]). So, in walking on 
PES we should consider the eigenvalues and corresponding eigenvectors. We 
denote the negative eigenvalues of the Hessian matrix as dc(descent)-charac- 
teristic and their eigenvectors as de-vectors in distinction to the notation given 
above for imaginary vibrations. In the literature [5] the term "transition vector" 
is also used for the de-vector of a saddle point of index 1. 

Large imaginary frequencies refer in general to high lying saddle points. But in 
the reversed situation small amounts of imaginary frequencies cannot necessarily 
be interpreted as belonging to low lying saddle points. Here the saddle may be 
broad (of. also [6]). 

A saddle point of index 1 is a lowest path maximum in a valley which is defined 
at least in the neighbourhood of the saddle point. Saddle points of second or 
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higher order may be illustrated as maxima (hilltops) in the subspace of the 
eigenvectors (coordinates) connected with the negative eigenvalues. They do not 
appear as entities in theories of chemical reactivity, that is, they are not located 
on minimum energy paths (MEP) of PES. There are always pathways of lower 
energy leading "around" saddles of a higher index [7]. These are the reasons for 
saddle points of index 2 and higher indices being mainly mentioned for complete- 
ness in PES investigations (see for instance [8a]). It should be noted that they 
were also used in a general critical point analysis of multidimensional PES (cf. 
[8b]). 

In the following we derive two types of saddle points of index 2 as boundary 
cases and discuss their meaning in theoretical reactivity investigation. For a better 
understanding of the consequences for the computational practice we shortly 
review some methods for the localization of stationary points on PES. 

2. The localization of saddle points 

We classify the common methods as follows: 

A) Descent methods on the PES (variable metric minimization methods) [9, 10]; 
B) nonspecific methods which calculate all types of stationary points (e.g. descent 

methods on a o-surface defined by the gradient norm [5]); 
C) ascent methods of different kind [ t l ,  12], for a review see for example [13]. 

To A): These methods localize saddle points only by using their properties of 
symmetry conservation [9]. Hence, if the symmetry is decreased along the d- 
mode(s) of the saddle point structure, the point group is suitable for localizing 
the saddle by descent on the PES. The basic type of these methods is given by 

qn+l = qn _ anAng~ES, gPES ---- VE (4) 

q~ is the vector of coordinates in the nth iteration. A represents an approximation 
to the inverse Hessian matrix H -1 of the PES (which is positive definite) starting 
usually with the unity matrix (steepest descent) followed by calculations using 
simple update schemes. ~ is a step length parameter. Symmetry conservation 
additionally ensures a high degree of accuracy for geometry and energy data. 
To B): The calculation of saddle points as well as any other stationary point on 
the PES may be realized on the o--surface [5] 

~(q) = 1/2gpEsgpEs = 1/2 Y, g2(q) (5) 
r 

which is defined by the Euclidian norm of the gradient. Using all experience of 
descent and least square methods, this procedure becomes very effective. Sym- 
metry conservation is only possible by special symmetry constraints in the atomic 
coordinates. 

To C): This type of method was developed for a direct calculation of saddle 
points of index 1. The method works if one can ensure that the minimum energy 
path is at least qualitatively of the so-called "valley path type" [14]. 
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3. The "Proper Saddle Point of Index 2" (P-SP 2) 

In this case we find two directions of negative curvature with eigenvectors which 
concern the same atom (or the same group of  atoms) of the system if we look 
for the important components of the vector. The saddle point structure may be 
abandoned by moving the atom (or the atoms) along one of the two directions 
of negative curvature or in any other direction between them. In this way we 
reach the other neighbouring stationary points: minima or SP I(SP 2). A d-mode 
of such a further saddle point (as next neighbouring stationary point to the given 
P-SP 2) has nothing to do with the d-modes at the given original P-SP 2. 

In the following we discuss examples for P-SP 2 exhibiting relatively high energy 
differences to other stationary points in their neighbourhood. Such types of  P-SP 2 
are very illustrative and of indirect importance for the prediction of chemical 
reaction pathways. All calculations were carried out with the well-known 
MINDO/3  method [15]. It should be stressed that the conclusions in our paper 
do not depend on the type of quantum chemical method. Furthermore, the 
selected examples represent qualitatively correct theoretical gas phase results. 

First example: face protonated pyrrole-H + 

In the electrophilic attack on aromatic compounds face cationization plays an 
important role in the discussion of possible reaction paths. Li § Na + etc. form 
minima on the PES in the face arrangement (centrosymmetrical association) [16, 
17], but cations like H § CH3 ~, F § etc. form unfavourable structures which 
represent typical P-SP2 [16, 18-20]. 

Face protonated pyrrole, which cannot be localized by modifications of method 
A but by methods B and C, shows two strong d-modes vii =2700i cm -1, and 
u~ = 2834i cm -1 both indicating a shift of the central proton to the periphery of 
the ring system (Fig. 1, Table 1). We reach the it-complex minima going downhill 
on the PES from the face protonated structure. The o-u-complex is here more 
stable by AEpot ~ 405 kJ/mol.  Using symmetry conservation (method A) we can 
move the proton in the symmetry plane bisecting the ring towards a SP 1 of 
structure S P ~ .  The other transition structures of the proton shifts (SP~,~ and 
SPN,~) have no suitable symmetry elements to use symmetry conservation. The 
calculation of these SP requires a searching by methods of the B and C type. 

SPNa c SP~, 
..H 

I I 
H H  

~N 6oc 6~ 

" .," 

I 
0 0 0  

Details of the interesting proton shifts on pyrrole were published recently [20]. 
A qualitative illustration of the energy maximum arising from proton migration 
over the pyrrole ring can be found in an earlier paper [21]. 
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Fig. l Illustration of the descent and d-mode vectors, 
respectively, of face protonated pyrrote (NC4Hs) 

Y 
I. 

z -- -N 

Table 1. Imaginary frequencies and displacement vectors a of face protonated pyrrole as a 
proper second order saddle (P-SP 2) on the PES 

Atoms/ - ;q  v~(2834i cm -1) -)t 2 v~(2700i cm -1) 
coordinates b d c - v e c t o r  d-mode-vector  d c - v e c t o r  d-mode-vector 

N Y - -  - -  -0.24 - -  
z -0.30 - -  - -  - -  

Ca x -0.20 - -  - -  - -  

H e x 0.85 0.97 - -  - -  
y - -  - -  0.88 0.98 

a Descent and d-mode vectors; only components ~>0.2 are listed. The sign of the components 
may be changed: such a "phase change" represents the alternative direction of descent 

b cf. Fig. 1 

Second example: face protonated benzene 

This P-SP 2 is best calculated by symmetry conservat ion (method A). The structure 
exhibits two degenerated decomposi t ion  modes:  

i i 
v~ = v2 = 2542,5t cm-L  

It is wel l -known that in the case of degenerated eigenvalues A1 = A2 the eigenvec- 

tors cannot  be un ique ly  defined. Any l inear combina t ion  of the two degenerated 
vectors dl and  d2 which satisfy the or thogonal i ty  give equally valid vectors: 

d~ = dl cos ~ + d2 sin 

d~ = - d l  sin q~ + d2 cos q~. 

It should be men t ioned  that or thogonal i ty  for the degenerated vectors (in contrast  
to the other) is ensured  by an addi t ional  procedure  in the programs. 

Hence,  the degeneracy has the consequence  that  the rectangular  a r rangement  of 
both vectors cannot  be fixed. In  our  example any l inear  combina t ion  rotates both  
or thogonal  vectors a round  ~ in a plane over the benzene  ring (cf. Fig. 2). 

We can leave the P-SP 2 moving the pro ton  along the symmetry p lane  dividing 
the middle  of  two bonds  of the benzene  system (procedure A using symmetry 
conservat ion:  A + S C ) .  The result is a SP 1 represent ing the type of t ransi t ion 
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Fig.2 Face protonated benzene: d-mode anddc-vectors, 
respectively, of the P-SP 2. Because of the degeneracy 
the vector cross cannot be fixed and is arbitrarily 
arranged in the figure, of. text. With exception of the 
HI~ and Hay all vector components are <~0.07 (d-mode 
vector) and <~0.015 (de-vector) 

structures of  the proton shifts within the protonated benzene: 

,Iq 

im  m 

On the other hand, moving the central proton of the P-SP 2 towards a carbon 
atom (A or A+SC)  we get one of the formulated minima (tr-complexes, the 
energy difference between the face structure and the minima is calculated to be 
AEpot ~ 325 kJ/mol).  Note that the MINDO/3  barrier height of the proton shifts 

$ (AEpot=33 kJ/mol)  was shown to be theorectically significant and consistent 
with experimental experience (cf. [22-23]). 

We conclude: face protonated aromatic compounds are high-energy saddle points 
of  index 2 which prevent proton shifts across the ring. Therefore, the proton 
shifts take place at the periphery of the rings. This kind of conclusion generally 
characterizes the possibilities in the interpretation of chemical reactivity by 
appearance of  P-SP 2. 

Third example: structures with linear - -  C - -  O - -  H bonds 

If  more than one but the same atoms of a system are concerned in the two 
d-modes we have again a P-SP 2. For the linear water molecule (localized by 
A+  SC, unstable with 122,5 kJ/mol) the degenerated imaginary frequencies are 
v~ = v~= 1593i cm -1, representing two d-modes which may be illustrated as two 
orthogonal vibrations of  the same type (arrows and signs, respectively; cf. the 
degenerated normal modes for stable linear systems like CO2): 

With no mass-weighting (dc-vector) the main atomic displacements are not given 
by the hydrogens but the oxygen. 

Other linear - - C - - O - - H  arrangements (in alcohols etc.) also have the character 
of P-SP 2 without degeneracy in the d-modes. No SP 1 is produced if we follow 
an eigenvector which belong to one of the two directiofis of negative curvature 
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(or any linear combination between the two eigenvectors) towards the next 
stationary point. 

Finally, let us note that the two directions of the descent vectors (d-mode vectors) 
of a P-SP 2 in general have only a mathematical meaning and are to be identified 
by means of the small and the broad ridge, respectively, which result from the 
harmonically approximated P-SP 2. In other words, they characterize main axes 
orientations leading down from a hill defined over the "descent coordinates". 

4. The "Virtual Saddle Point of Index 2" (V-SP 2) 

From the P-SP 2 type we may distinguish a further type of SP 2, the so-called 
virtual saddle point of  index 2. In this case the two d-modes do affect different 
atoms. Each d-mode has to be regarded as belonging to one of two saddle points 
of index 1 represented in the given structure of  the system. 

From a chemical point of view both d-modes represent in this case two transition 
states of relatively independent processes in the system. Such a situation has to 
be expected only for polyatomic systems. 

Moving the system along one of  the descent vectors of the V-SP 2 a next stationary 
point is by no means a minimum but a SP 1 (or again a V-SP 2). The d-mode of 
that new SP 1 (or one d-mode of the possible SP 2) is directly related to one of 
the original V-SP 2. 

First example: H2CO3...  H2F + in a twofold cyclic transfer (I) 

7 3 y 

g O 1 2 /H- .s  6 J,-//~x H / \ \O/c-O~..H/F+-H 
8 4 

I(C s/A + SC) 

/.O\ /H 
H\o/C-O~H_~. ~ 

1"1"(Cl/B) 

H-O. /H \  
s " C - Q  I~-H 

O//- \H/'+ .. 
m(CdB) 

In structure I (optimized by A+SC)  we simultaneously realized two 
(hypothetical) transition structures for transfer reactions. In comparing the two 
imaginary frequencies of  I with that of the next SP 1 (structures II and III) we 
find the relations 

u',(I) ~ vi(II) 

and 

~,~(I) ~ v '(III)  

as postulated above. As expected the quantiative agreement is best for large 
imaginary frequencies. 
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Table 2. Comparison of the characteristic displacement vectors of a V-SP 2 (I) with that of  
the two implied SP 1 (II and III); numbering cf. text, further comments see Table 1 

Structure I (V-SP2) Structure II (SP 1) 
Atoms/  dc-vector d-mode-vector dc-vector d-mode-vector 
coordinates -A l v~(2613i cm- l )  a -A  vi(2601 i cm -1) 

ly  
7x 

Y 
8x 

Y 
9y 

-0 .28 -0.28 
-0 .32 -0 .32 
-0 .26  -0 .26 

0.32 0.32 
-0 .26 -0 .26 

0.76 0.96 0.76 0.96 

Structure III (SP 1') 
--A 2 v~(143i cm -1) -A  v~(136i cm -1 ) 

2y -0 .22 -0 .52 -0 .22  -0 .50 
3x 0.29 0.21 (0.17) (0.12) 

y -0.41 -0 .28 -0.3~ -0.23 
4x -0 .29 -0.21 -0.37 -0.25 

y -0.41 -0.28 -0.43 -0.28 
5y 0.30 0.45 0.32 0.48 
6y 0.50 0.25 0.51 0.23 
7x 0.29 0.27 
8x -0.29 -0.35 

i pi a The large v t (I) and (II) are necessarily related to a large energy difference AEI_ m 
(274 kJ/mol ,  MINDO/3) .  The small v~ (I) and v i (III) are here related to the small AEI_II = 
13 kJ/mol  

This example shows imaginary frequencies of quite different complexity concern- 
ing the displacement vectors. Especially the vectors of III give an impression of 
the influence of mass-weighting in comparison to the situation on the potential 
surface (Table 2). 

To point out further characteristic V-SP2 we chose as second example a p- 
substituted aromatic compound representing a degenerated case. 

Second example: p-Hydroquinone in the out-of-plane structure I V  

V(C2htA) IV(C2h/A+SC) ~(C1/B) 

The two reaction centers in IV (here simply an overcoming of rotational barriers) 
are separated by the aromatic ring. Thus, the system is best qualified for the 
occurence of V-SP 2. Of course, the p-substituents may be of another type and 
different chemical reactions could be simulated allowing the construction of any 
number of V-SP 2. 
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Structure VI represents one of the neighbouring SP 1 and V one of the correspond- 
ing minima. The V-SP 2 IV cannot be identified by an analysis of the d-vectors 
because of the degeneracy of the two d-modes. A linear combination of two such 
d-vectors may produce pairs of vectors containing displacement components of 
both hydrogens. 

An identification of the degenerated V-SP 2 may be given more intuitively by 
looking for two chemical processes connected with the corresponding d-modes. 
A more exact approach is given by removing the symmetry plane between the 
two centers (e.g., by small angle deformation in the reaction center one against 
two; the asymmetry will be not completely removed after gradient geometry 
optimization on the basis of a lower symmetry group). For the disturbed systems 
we get two slightly different d-modes with well-defined d-vectors suitable for the 
analysis. 

A further aspect should be mentioned. In contrast to P-SP 2 each descent (d-mode) 
vector in a V-SP 2 characterizes the first step towards a (local) minimum energy 
path. Following one of the two vectors downhill we find a local minimum on 
one part of the surface which is relatively independent from the other part 
containing the SP 1 whose displacement vector is related to the second imaginary 
mode of the V-SP 2. 

5. Conclusions 

We selected two important types of saddle points of index 2: the virtual saddle 
point (V-SP 2) and the proper saddle point of index 2 (P-SP 2). 

The V-SP 2 appears as geometrical representation of two first order saddle points 
in a chemical system where two independent chemical processes can be defined. 
The identification of a V-SP 2 leads to a simple strategy for the localization of 
the 2 neighbouring transition states. It is characterized by the fact that the two 
decomposition modes concern two different reaction centers (the term "reaction" 
is here used for all processes overcoming a barrier on a potential surface). The 
V-SP 2 will be found by the analysis of the eigenvectors of the decomposition 
modes with the exception of  degenerated cases. 

A P-SP 2 is characterized by the fact, that the two decomposition modes affect 
the same atom or atomic group. P-SP 2 are (as other stationary points) necessary 
for a complete topological characterization of the system. We remember the fact 
that a given type of structure may represent different kinds of stationary points 
(among them SP 2) already by substituting one atom by another one (cf. face 
cationized benzene, discussed in this paper). That is, P-SP 2 may characterize 
structures which are supposed to be of importance from chemical intuition and 
have thus to be considered in theoretical analysis. Independently, high lying 
P-SP 2 characterize "forbidden" regions for reaction paths. Together with neigh- 
bouring minima and SP 1 they give valuable information where the trajectories 
of a chemical reaction should mainly be concentrated. The paper also elucidates 
the construction of SP of a higher index by a suitable combination of two or a 
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h i g h e r  n u m b e r  o f  SP 1, SP  2, . . .  SP  n. O f  course ,  a s p e c t r u m  o f  t r ans i t i ons  exis t  

b e t w e e n  t h e  t w o  b o u n d a r y  cases  o u t l i n e d  above .  I t  s h o u l d  be  m e n t i o n e d  tha t  

s o m e  p r o p e r t i e s  o f  s e m i e m p i r i c a l  m e t h o d s  fac i l i t a t e  the  o c c u r e n c e  o f  s o m e  type  

o f  S P 2 .  So it is w e l l - k n o w n  tha t  s e m i e m p i r i c a l  m e t h o d s  t e n d  to des t ab i l i ze  

s y m m e t r i c  in c o m p a r i s o n  to  a s y m m e t r i c  s t ruc tu res  [24] (cf. t he  sec. p r o p y l  ca t ion)  

c a l c u l a t i n g  p l a n e  SP 1 as SP  2 by  an  a d d i t i o n a l  d e f o r m a t i o n  m o d e  o f  t he  ske le ton .  
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